# 医療用3色レーザを用いた透過型高精度位相計測干渉顕微鏡の開発

### 1. はじめに

近年、高齢化社会が急速に進むにつれて新しい診断 や医療技術の開発が求められている。とりわけ、病変 細胞の識別や細胞機能の解明のために活きた生物細 胞の非侵襲での定量計測がますます重要である。従来 の染色観察法は細胞の性質を変えてしまうと共に、定 量計測が不可能であった。また、独立した両腕を持つ 従来型干渉顕微鏡は、振動や空気揺らぎの影響を受け やすく、現場での応用が困難であった。その上、干渉 顕微鏡の光源に単一波長のレーザ光を用いるため、光 学顕微鏡本来の特長である色情報が欠落すること、試 料の波長分散が計測できないこと、染色による病理検 査法との対比が難しいことなどの課題があった。

本研究の目的は、われわれが開発した共通光路干渉 顕微鏡に3色レーザを導入し、振動などの影響を受け ない、光の色情報をも活用できる超高安定・高精度の 新しい干渉顕微鏡システムの開発である。

## 2. 原理と光学系

RGB3色レーザを光源に用いた共通光路位相シフ ト干渉顕微鏡の構成を図1に示す。システムのコンパ クト化をはかるため、3つのレーザ光をファイバー合 波器で一つの準白色光に合波して干渉顕微鏡の光源 として用いた。また、それぞれのレーザ光強度を独立 に調整できるようにするため、絞りを用いたレーザビ ーム径の調整機構を考案した。試料は無限遠補正の対 物レンズと結像レンズでカメラの撮像面に結像され る。



図13色レーザを用いた共通光路干渉顕微鏡の構成

研究代表者 工学部メディア画像学科 教授 陳 軍 共同研究者 エフケー光学研究所 開発部長 遠藤 潤二

> 試料を透過した光はウォラストン・プリズム(WP) によって2度の分離角で偏光方向が直交する2つの直 線偏光に分割され、これらの光は偏光板を通過し干渉 する。カメラによって検出される干渉縞の強度分布は

$$I_{\lambda}(x, y; \delta) = a_{\lambda}(x, y) + b_{\lambda}(x, y) \cos\left[2\pi f x + \varphi_{\lambda}(x, y) + \delta\right], (1)$$

と表すことができる。ここで $a_{\lambda}(x,y)$ と $b_{\lambda}(x,y)$ は干渉 縞のバイアスと振幅で、 $2\pi fx$ は干渉する 2 光波間の 波面の傾きである。 $\varphi_{\lambda}(x,y)$ は被検の位相分布で、厚 さt、屈折率分布 $n_{\lambda}(x,y)$ の試料の場合、

$$\varphi_{\lambda}(x, y) = \frac{2\pi}{\lambda} t \big[ n_{\lambda}(x, y) - n_r \big], \qquad (2)$$

となる。ここで、 $\delta$ は WP の横移動による位相シフト である。位相計測を行う際、ピエゾ素子で WP を光軸 に対して横方向に移動させて  $\pi/2$  ずつの位相シフト を導入し、4 つ以上の干渉縞画像を撮像して計算機に 取り込み、位相シフト干渉法の位相導出アルゴリズム <sup>1)</sup>を用いて被検の位相分布を計算する。

このシステムでは、干渉する2光波はほぼ同じ光路 を透過するため、空気揺らぎや振動などの影響はキャ ンセルされ、超高安定の位相計測を可能になる。また、 高安定性から、システム固有の誤差も引き算で除去で きる。

#### 3. 実験と実験結果

実験では、ファイバー出力半導体レーザ FOLS02 と DPSS レーザを用いた。レーザの発振波長はそれぞれ 赤 671nm、緑 532nm、青 457nm である。試料の拡大 にはオリンパス社製の対物レンズ(LMPLFLN 20X, NA 0.4)を用いた。また、干渉画像の撮像には、C-MOS カメラ Mako G-507C (Allied Vision)と CCD カメラ KP-M2(日立国際電気)を用いた。

赤、緑、青各色レーザ単独や、3 色レーザを同時に 用いたときの干渉画像をそれぞれ図2(a)~(d)に示す。 いずれの場合でもコントラストの高い干渉画像が得 られている。次に、位相計測の線形性や、計測誤差、 及び再現性を調べた。各色で同程度の結果が得られ、 その中の緑色のレーザ光で行った結果を図3に示す。

#### KOUGEI カラーサイエンス&アート、シンポジウム&成果報告会

図 3(a)は干渉画像、 (b)は得られた光路差の3D プロ ット、(c)はラインプロットと誤差である。結果から、 位相計測の線形性がよく、また位相誤差の RMS 値が λ/700 程度であった。



図2 3 色レーザを用いたときの干渉画像:(a) 赤色,(b) 緑色, (c) 青色,(d) 3 色レーザ同時入射



図3 位相計測の線形性と誤差: (a) 干渉画像, (b)計測した波面の3D プロット, (c)光路差のラインプロットと誤差

次にタマネギの鱗片葉を試料として、通常の顕微鏡 では困難な細胞核の計測を行った。実験には赤レーザ を用いた。実験結果を図4に示す。図4(a)は通常の 透過型光学顕微鏡による写真で、(b)は干渉画像、(c) は計測で得られた細胞核の3Dプロットである。細胞 の中に隠れている細胞核の計測が可能となった。



図4 タマネギ表皮細胞の計測結果:(a) 通常の透過型顕微鏡 像,(b) 干渉画像,(c) 細胞核の光学厚さの3D プロット

## 4. おわりに

ウォラストン・プリズムを用いた透過型共通光路 位相シフト干渉顕微鏡に、RGB3色のレーザ光を光フ ァイバー合波器で合波した白色光源を導入すること で、共通光路による高安定・高精度の特徴を維持しな がら、白色光照明の顕微観察ができ、被検試料の波長 分散の計測が可能となった。さらに、異なる波長によ る位相計測結果の組み合わせによって、長い等価波長 による段差試料などへの応用も期待できる。3色波長 での同時位相計測は今後の課題である。

謝辞:本研究は「平成28年度文部科学省私立大学研究 ブランディング事業」の助成を受けて行われたもので ある。

文献:

 J. Schmit, K. Creath, and J. C. Wyant, in Optical Shop Testing, D. Malacara, ed., p.667 (2007).

本研究に関する学会発表と体験ワークショップ開催:

- 1)陳 軍,柿沼 慎,相良 拓哉,第 42 回光学シンポジウム 講演予稿集 p.61(2017.6).
- 陳 軍,遠藤 潤二, "透過型共通光路位相シフト干渉顕微 鏡の高精度化" Optics & Photonics Japan 2017 (東京), 講演予稿集 CD:2aB3(2017.11).
- 3)陳 軍,平松 昌晃,遠藤 潤二,"多波長共通光路位相シ フト干渉顕微鏡の研究"第65回応用物理学会春季学術 講演会(2018.3.20発表予定).
- (色をつくる体験ワークショップ B-偏光色を楽しもう-」の開催、厚木キャンパスにて、参加者 26 名(2017.11).