Proceedings of 1* International Symposium for Color Science and Art 2019

An Acceleration Method for Color Computation
Using Coarse Pixel Shading

Takashi Imagire

Tokyo Polytechnic Univ., 2-9-5 Honcho, Nakano, Tokyo 164-8678, Japan

ABSTRACT

Coarse pixel shading is a method of reducing the color
computation load in scenes by partially changing the size
of pixels. Although coarse piece plotting is one of the
speeding up techniques, the current GPU architecture has
no standard function of partially changing the size of
output pixels, nor has it been incorporated into real-time
applications. In our method, by selecting a fragment to be
processed by the fragment shader, which is a processing
for each pixel, before inputting it to the fragment shader,
color computation by the coarse pixel shading completed
by a graphics pipeline not causing unnecessary color
computation Is realized.

1. INTRODUCTION and RELATED WORKS

The GPU consists of shader units and fixed functions.
Regarding the fixed function, it is possible to configure
predetermined functions, and restrict the processing which
can be realized utilizing. One thing that cannot be realized
is partial resolution change in an image. In rendering with
VR, the degree of detail of the peripheral vision part is
unnecessary, so a method to speed up the color
computation has been proposed [1]. However, since the
current GPU can only render an object with a constant
pixel density, it is necessary to render images with multiple
resolutions and combine them in generating an multi
resolution image, as well as computing the same
fragments over and over again.

Vaidyanathan et al. [2] proposed the Coarse Pixel
Shading. For fragments that perform lighting calculations,
multiple pixels are grouped together as a square fragment
of a large size of 2 without associating fragments and
pixels one to one It is a method to speed up the rendering
by calculating. Sathe and Janczak [3] adapted Deferred
Coarse Pixel Shading as a method that can be

55

implemented with game engines that are standard in
current commercial games, adapting coarse fragment
drawing to differed rendering. However, the Deferred CPS
is not closed in the rendering pipeline of the GPU, it uses a
compute shader to implement CPS that is used for
perform General-Purpose GPU computation, and the
purpose as a rendering method for load reduction It is not
suitable.

In this paper, we propose a method to realize CPS only
by rendering pipeline without compute pipeline, using
early culling function with mipmap structure as well as
texture mipmap structure

2. OUR METHOD

Our method extends the deferred shading [4]. Figure 2
shows the rendering pipeline. In standard deferred
shading, after generating G-buffers, color computation is
performed using the information of the G-buffers. In our
method, after generation of the G-buffers, a hierarchical
stencil buffer (stencil pyramid) is created, and by
performing the early stencil test using the stencil pyramid,
rendering only the necessary fragments to the render
targets of the mipmap structure is realized. Finally, one
image is generated by combining the results rendered as
mipmap textures.
2.1 G-buffer generation

First, information for color computation are outputted to
G-buffers. Normally, albedo, specular reflection rate,
roughness, normal map, etc. are recorded in the G-buffers,
in our method, the degree of detail of coarse pixel shading
(LOD buffer) is added to the G-buffers. In the LOD buffer,
record the level L of the fragment for calculating each pixel.
A fragment of level L is a square with the number of pixels
of one side is 2L. In this paper, we use the phong reflection
model for the specular reflection as the color computation
with applying the LOD buffer, our method can be applied
to other color computation models.
2.2 Stencil Pyramid construction

Next, a hierarchical stencil buffer is constructed to
perform early culling. Prepare a stencil buffer as many as
the maximum number of detail levels. The magnitude of
each stenciff buffer is made smaller by the power of 2 of
detail level. Copy the LOD buffer to each stencil buffer. For
this time, we used the OpenGL
GL_ARB_shader_stencil_export extension to write the
LOD buffer directly into the stencil buffer. As an
implementation of the proposed method, it is possible to



Proceedings of 1* International Symposium for Color Science and Art 2019

use a depth buffer instead of a stencil buffer,Because it is
difficult to compare floating point number matching and
floating point number and fixed decimal number
conversion in the depth buffer processing, it is difficult to
extract matching fragments, so in this method the stencil
buffer was used for the premature ring.
2.3 Color computation

After that, perform color computation using G-buffers.
Prepare a mipmaped render target with a size of power of
2 up to the maximum level of detail level like the stencil
buffer and perform color computation with early stencil
testing for each mipmap level. In the stencil test, the detail
level of the render target to be compute is compared with
the value of the stencil buffer, and only fragments with the
same value are drawn.

2.4 Final Image construction

Finally, the mipmap texture of the computed result is
gathered for each level to generate the final image. For
each pixel, reading the texture at the mipmap level of the
value of the LOD buffer and the image of the standard
CPS is generated. As the results of this standard CPS
stand out for block artifacts, we reduce artifacts by our
custom interpolation.

3. RESULTS

For verification of this method, we used a notebook PC
(Razer Blade Stealth) equipped with Radeon RX 560 as
an external GPU. We use OpenGL for 3D APl and GLFW
3.2.1 for framework. In the proposed method, the
GL_ARB_shader_stencil_export extension is necessary.
In environments where this extension is not supported,
such as NVIDIA GPU, this demo does not work. Figure 1
shows the results of the proposed method. Color
computation is performed with 9 Levels of Details from 1 x
110 256 x 256. In the demo the number of light sources set
to 200, in a normal color computation with one pixel as one
fragment, it is executed at 36.4 FPS, the result of our
method is 60.1 FPS. The execution speed of 65%
Improvement was obtained.

4. FUTURE WORKS
In our method, the final color is derived by performing
linear combination of the color of the neighborhood

fragments, not the sampling of the nearest neighbor pixels,

but the discontinuity is observed in the bounaries where
the level of detail changes. Since this problem is
noticeable as the level of detail decreases, it is necessary
to suppress the upper limit of the detail level or to improve
the sampling method.

As an example of this case, we applied the algorithm to
generate 2D planar images, but we want to realize the
result of improving the user experience by applying it to
the use of CSP as VR sickness countermeasure [5].

56

Fig. 2 Rendering Process

5. REFERENCES

[1] B. Guenter, M. Finch and S. Drucker, D. Tan and J.
Snyder, "Foveated 3D Graphics", ACM Trans. Graph.
31(6), pp.164:1-164:10 (2012).

[2] K. Vaidyanathan, M Salvi, R. Toth, T. Foley, T. Akenine
-Moller, J. Nilsson, J. Munkberg, J. Hasselgren, M.
Sugihara, P. Clarberg, T. Janczak and A. Lefohn,

"Coarse Pixel Shading", Proceedings of High
Performance Graphics 10 pp.9-18 (2014).
[3] R. P. Sathe and T. Janczak, "Deferred Coarse Pixel
Shading", GPU Pro 7, CRC Press, pp.145-153 (2016).
[4] M. Valient, "Deferred rendering in killzone 2", in
Develop Conference, http://www.guerrilla-games.com/
publications/dr_kz2_rsx_dev07.pdf (2007).
[5] K. Tachibana and T. Imagire, “A Fast Rendering
Technique for VR Sickness Prevention using Coarse
Pixel Shading”, in I3D 2018 Posters (2018).



